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The temporal and spatial evolution of large-scale modulations of weakly nonlinear 
edge waves on a uniformly sloping beach is studied using the full water-wave 
formulation for beach angles a = x / 2 N .  Equations governing the evolution of 
envelopes of edge waves, excited by resonant interactions with incident wavetrains, 
are derived. It is deduced that a uniform train of free periodic edge waves is always 
unstable to large-scale variations, so that envelope solitons will develop ; the resulting 
three-dimensional solitons are described in detail. I n  addition, i t  is shown that 
steady-state standing subharmonic edge waves, excited by incident wavetrains on 
a long, mildly sloping beach, can be unstable to  large-scale modulations. The possible 
physical significance of these findings is discussed. 

1. Introduction 
Edge waves are trapped wave modes, propagating along the coastline of a sloping 

beach, and decaying in the offshore direction. Although the existence of a solution 
of the linear water-wave problem, representing edge waves on a uniformly sloping 
beach, has been known for quite some time (Stokes 1846), the physical significance 
of edge waves has been only recently recognized (Munk, Snodgrass & Carrier 1956). 
At present, it is generally believed that edge waves play an important role in the 
formation of coastal patterns (Guza & Inman 1975), and in the generation of rip 
currents and periodic circulation cells in the nearshore region (Bowen & Inman 1969). 

The main reason, for which very little physical relevance has been attached to  edge 
waves for a long time, stems from the fact that the appropriate generation 
mechanisms of such trapped wave disturbances are not immediately clear. Greenspan 
(1956) first demonstrated that edge waves can be excited by atmospheric forcing due 
to storms moving along the coastline. Later, Guza & Davis (1974), in an attempt to 
explain the experimental observations of Galvin (1965) and Bowen & Inman (1969), 
pointed attention to the fact that edge waves can also be generated by nonlinear 
interactions with incoming wavetrains : using the shallow-water approximation, they 
showed that a monochromatic harmonic wavetrain of frequency o, normally incident 
and reflected on a beach, is unstable to  subharmonic standing edge-wave perturbations 
of frequency J p .  Guza & Bowen (1976) and, more recently, Rockliff (1978) studied 
the full nonlinear interaction of subharmonic edge waves with incident wavetrains 
in the shallow-water approximation, and concluded that the initial instability 
eventually gives rise to  steady-state edge waves. I n  the further development of the 
theory, Whitham (1976) pointed out that the shallow-water approximation is 
inadequate to describe the behaviour of edge waves uniformly in the offshore 
direction ; using the full water-wave formulation, he calculated the leading-order 
nonlinear correction to the linear dispersion relation of travelling Stokes edge waves, 
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and thereby deduced that periodic finite-amplitude edge waves are always unstable 
to large-scale modulations. Later, Minzoni & Whitham (1977) studied the excitation 
of monochromatic subharmonic edge waves by incident wavetrains, using the full 
water-wave formulation ; in the small-beach-angle limit their results confirm the 
predictions of the shallow-water theory. 

I n  the present paper, the theory of Whitham (1976) and Minzoni & Whitham (1977) 
is extended to interacting edge-wave packets. Using the full water-wave formulation, 
evolution equations for the envelopes of subharmonic edge-wave packets, excited by 
incident wavetrains, are derived. The temporal and spatial non-uniformities en- 
countered in the weakly nonlinear regime are handled using the method of multiple 
scales. The resulting uniformly valid envelope equations are employed to study two 
problems of physical interest : first, the modulational instability of free periodic 
travelling edge waves is re-examined, and i t  is confirmed that the instability, 
predicted by Whitham (1976), indeed leads to  a series of envelope solitons; in 
addition, the present formulation enables' us to describe the three-dimensional 
structure of edge-wave envelope solitons. Secondly, the stability to large-scale 
modulations of the steady-state subharmonic edge waves, predicted by Guza & 
Bowen (1976) and Minzoni & Whitham (1977), is investigated. It is found that, in 
the small-beach-angle limit, large-scale modulations may grow, the instability 
increasing with the amplitude of the incoming wave train. Finally, the possible 
physical significance of this instability is discussed briefly. 

2. Formulation 
Consider a uniformly sloping beach of angle a. A coordinate system is chosen such 

that x, y and z are the offshore, vertical and longshore coordinates respectively. The 
classical gravity water-wave problem can be formulated in terms of a velocity 
potential @(x, y, z ,  t )  and the free-surface elevation y = y(x, z ,  t ) .  It proves convenient 
to use dimensionless (primed) variables : 

where g is the gravitational acceleration, 1 is a typical perturbation wavelength, and 
a denotes a typical perturbation amplitude. When the primes are dropped, the 
problem, in terms of dimensionless variables, consists of Laplace's equation for the 
velocity potential in the wedge -x tan a < y < €7, subject to the (nonlinear) 
kinematic and pressure conditions at the free surface y = €7, and the bottom 
boundary condition a t  y = -x tana .  The dimensionless parameter e = a l l  is a 
measure of nonlinearity, and, for the purpose of the subsequent theoretical develop- 
ment, it will be assumed small, e 6 1 .  It is then appropriate to expand the free-surface 
conditions about the fixed level y = 0, so that  the water-wave problem, expressed 
in terms of the velocity potential alone, and correct to O(e2), reads 

@zz+@yy+@zz = 0 ( - x t a n a  < y < 0), ( 1 )  

@,sinu+@,cosa = 0 ( y  = -x tana) .  (3) 

The linear theory is obtained by setting e = 0 in ( 2 ) ,  and has been the subject of 
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numerous investigations. (A detailed account of these studies is given by Whitham 
(1979).) For our purposes, it is sufficient to quote that the linearized problem (1)-(3) 
( E  = 0) admits two distinct types of time-harmonic wave solutions: first, a discrete 
spectrum of edge-wave modes, which propagate along the shore and decay seawards, 
and, secondly, a continuous spectrum of wavetrains incident from deep water and 
reflected on the beach. In  particular, the Stokes edge-wave mode is possible for a < i7c 
and corresponds to  the potential 

@ = F ( x ,  y)  ei(kz-wt) + c . c .> (4) 

where w2 = k sin a,  ( 5 )  

F ( x ,  y) = exp ( - kx cos a + ky sin a) ,  (6) 

and C.C. denotes the complex conjugate. Wave disturbances in the form of periodic 
wavetrains, incident and reflected on a beach, are described by 

@ =f(x,  y)ei(kz-wt)+c.~., (7)  

with w2 > k. The specific form of f(x, y) depends on the wave-reflection properties of 
the beach, which must be determined experimentally. The present discussion will be 
confined to normally incident, perfectly reflected wavetrains, so that @ corresponds 
to a uniform standing wavetrain in deep water, and k is taken to be zero in ( 7 ) ;  under 
these conditions, an explicit formula forf(z, y) can be derived (see Whitham 1979). 

According to  the linear theory, edge waves and incoming wavetrains on a beach 
can coexist, without any interaction. However, it is well known that, in the weakly 
nonlinear regime (0 < c 4 l ) ,  significant energy exchanges between different wave 
modes can occur, if certain resonance conditions are satisfied. I n  the following 
sections, nonlinear evolution equations are derived for the envelopes of two subhar- 
monic edge-wave packets, excited by an incident wavetrain owing to nonlinear 
resonant interactions. 

3. Evolution of the envelopes at the shoreline 
Consider a normally incident wavetrain of frequency w interacting with two Stokes 

edge-wave packets of frequency $o propagating in opposite directions along a beach. 
The nonlinear parameter E is based on the amplitude of the incident wavetrain in deep 
water, and the slopes of the edge-wave packets are taken to be O($).  Such a balance 
ensures that the nonlinear interactions between the edge waves themselves occur on 
the same timescale as the interactions between incident and edge-wave packets. 
Accordingly, a suitable expansion of the velocity potential for the three interacting 
wave packets is 

@(x,y,z,t) = e-1F(x,y)((A+(X, Y,Z,T)eiB+ +c.c.)+(A-(X, Y,,Z,  T) eio-+c.c.)} 

+{S(x,y;X, Y,Z,T)e-iwt+c.c.}+ ..., (8) 

O+ = fkz-$ot ,  w2 = 4ksina, (9) 

and X=px, Y = p y ,  Z = p ~ ,  T = p t ,  p 4 1 (10) 

where 

are long scales associated with the evolution of the wave envelopes. The 0(1) term 
in (8) represents the incident and reflected wavetrain, and will be made specific later. 
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I n  addition, the dependence on the long scales remains unspecified at this stage; it 
will be determined by the requirement that  (8) is uniformly valid in space and time. 

The nonlinear equations that govern the temporal and spatial evolution of the 
edge-wave envelopes A+ and A- can be derived by substituting the proposed 
expansion (8) into (1)-(3), and solving perturbatively to the required order of 
approximation. However, using already known results, it  is possible to obtain some 
information about the appropriate envelope equations, without going through the 
formal analysis in detail. 

As is well known, in simpler problems, where there is no dependence on the offshore 
coordinate, the envelope A(2,  T) of a finite-amplitude travelling wave packet 
A ( 2 ,  T )  ei(kz-9t) satisfies the nonlinear Schrodinger equation 

A ,  + cg A,  = $p9” A,, + i -9, A2A*, 

where 9 = 9 ( k )  is the linear dispersion relation, cg = Sl’(k) is the group velocity, 9, 
is a certain real coefficient depending on the particular problem, and the amplitude 
of the wave packet is O(d) .  The origin of the various terms in (11)  can be easily 
identified : the linear terms describe the propagation and slight dispersion of the 
almost-monochromatic wavetrain and can be readily computed from the linear 
dispersion relation ; the nonlinear term is due to the self-interaction of the wave packet 
and represents the leading-order nonlinear correction to the linear dispersion relation. 

Since the nonlinear Schrodinger equation does not involve any dependence on the 
offshore coordinate, i t  is clear that  the envelope of a travelling edge-wave packet a t  
the shoreline should be governed by the same equation. Similarly, i t  is anticipated 
that, in the case of two edge waves travelling in opposite directions and interacting 
with an incident and reflected wavetrain, the edge-wave envelopes A+ and A- should 
satisfy equations of the form 

( 1 1 )  
E 

P 

E 
A,,+c,A, ,  = ~ i p 9 ” A + , Z + - ( i 9 , A ~ A ~ + N , A , A T A ~ + N , X A ~ )  

- P  
( X  = 0, Y = O ) ,  (12) 

where, according to (9), 9 ( k )  = (ksina):, and N , , N ,  are certain constants. The two 
additional nonlinear terms on the right-hand side of (12) are due respectively to 
cross-interactions between edge waves travelling in opposite directions and to 
interactions with the incident wavetrain. 

Minzoni & Whitham (1977) derived an evolution equation of the form (12) for the 
special case of a purely standing edge wave with no longshore modulations ( A ,  = A- 
and no 2-dependence), and calculated the coefficients Q,, N,, N,. Since the addition 
of 2-dependence is not expected to affect the values of these constants, the evolution 
equations of the edge-wave envelopes a t  the shoreline are already known, without 
the need of any further analysis. However, the dependence of the envelopes on the 
direction out to sea cannot be obtained by (12) alone. 

The analysis that  follows provides the appropriate evolution equations which 
describe the behaviour of the envelopes in the offshore direction, and confirms the 
validity of the results quoted above. 
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4. Complete evolution equations 
When the proposed expansion (8) is substituted into (1)-(3), and terms proportional 

to eciWt are collected, it is found that, to leading order, S satisfies the inhomogeneous 
problem 

S,,+S,, = 0 (-xtanu < y < 0), (13) 

SY-w2S = 4iwk2F2A+A- (y = 0), (14) 

S,sinu+S,cosa = 0 (y = -xtana).  (15) 

The required solution of (13)-( 15) can be expressed as the superposition of a particular 
solution, representing a purely reflected wave in deep water (x+ a), and a solution 
S, of the corresponding homogeneous problem, representing the incident and 
reflected wavetrain in the absence of edge waves : 

where 

S = S,(x, y)+4iwA+A_P(x,y), 

Pxx+P,, = 0 (-xtanu < y < o), 

(Y = O ) ,  (18) 

P,sinu+P,cosa = 0 (y = -xtanu),  (19) 

P N Ceiw2x (x+ao). (20) 

p -W2p = k2 e-%kxcosa 
Y 

Following Minzoni & Whitham (1977), the solution of (17), subject to (18)-(20), 
and for beach angles a = n/2N, is found as an expansion in the eigenfunctions S,(x, y), 
with S,(O, 0) = 1 ,  of the eigenvalue problem 

S,,+S,, = 0 (-xtanu < y < 0), (21) 

S,-lS = 0 (y = O),  (22) 

S,sina+S,cosu = 0 (y = -xtana).  (23) 

In particular, it can be shown that 

and the path of integration in (24) is indented to pass below the pole at 1 = w2,  so 
that the radiation condition (20) is satisfied. (The details of the derivation of (24) can 
be found in Minzoni & Whitham (1977), and will not be repeated here.) 

The dependence of the wave envelopes on the slow scales is specified by collecting 
terms proportional to eie+ and eie-. First, Laplace’s equation must be satisfied: 

P - cos uA - + + sin aA , f iA +z + (A,,,  + A * y y  + A  kzz) = 0 

( -Xtana  < Y < 0). (26) 

Secondly, the nonlinear surface boundary condition (2), and the bottom boundary 
condition (3) generate terms proportional to eio+ and eiB-, which form the right- 
hand-side terms of the corresponding inhomogeneous problems for the higher-order 
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corrections to the edge waves. I n  particular, if F(,2)eis* denotes the correction to 
A, Feie+, FP' and F!? satisfy the inhomogeneous problems 

F(2) +xx +F@) f Y Y  - k 2 F ( 2 ) = 0  - + ( - x t a n a < y < O ) ,  (27) 

If (9 = 01, (28) 

F(&sina+FJ21,cosu = R,+ - (y = -x tana) ,  (29) 

2) - 1 2 (2) = R FJ, @ F ,  

where 

Ri = P-IF(~wA+ - T - A i y - y A ,  TT) 

+ iwdA${S, Fx + 8, FY + $[F(X,-dS)],)  

- 48k4F3A+{A+ - -  AT + 2AT A$ + 6 sin2 a AT A $ )  ( Y = 0), (30) 

R,, = - , u d F ( s i n a A + x + c o s a A + y )  - - ( Y  = - X t a n a ) .  (31) 

The appropriate evolution equations for the envelopes A+ and A- are derived by 
requiring that no secular terms, which would destroy the assumed uniform validity 
of the expansion (8), should appear. Accordingly, the inhomogeneous problems 
(27)-(29) must admit solutions that behave in an acceptable way at infinity. 
Since the corresponding homogeneous problem has a solution (the Stokes edge 
wave), the inhomogeneous problem is not soluble, unless R,,, R,, satisfy the 
appropriate solvability conditions : 

Jom R, , ePkx CoSa  dx - JOm R,, eckr dr = 0, (32) 

which can be derived by applying Green's theorem in the wedge - x tan a < y < 0. 

solution of the inhomogeneous problems (27)-(29), since 
As noted by Whitham (1976), there is a further source of non-uniformity in the 

R,  , - p-? e-kx Cosa (iwA, -A, - yA , TT) + iodA$ (SxFx + 8,FY) 

(y = 0, x+0O); (33) 

in the limit x + m ,  F$? and F(2) are given asymptotically as the solutions of the 
reduced inhomogeneous problems, obtained by using the asymptotic result (33) as 
the right-hand side in (28), and neglecting the bottom condition (29). However, owing 
to the term proportional to  e-kxcosa in (33), the solutions of the reduced problems 
exhibit secular behaviour. Therefore, in order to  keep (8) uniformly valid, we must 
insist that 

(34) 

Finally, after some manipulation, using (34), and with the aid of (13) and (14), the 
solvability conditions (32) reduce to  

1L -(sin a A - + X  + cosa A+ - y )  - iewk2A$ 
2k 

(1  + 3 cos'a) 
sin 2a 

x {4/emS1(x, y = 0) F2(x, y = 0) dx-io 

k3 
-E-{~~+(A+ AT +2AT A$)-6 sin2a A+ A, A $ }  = 0 (X = 0, Y = 0). - cosu - - - 

(35) 
It should be noted that, in terms of the envelope variables, the conditions (35) hold 
at the shoreline: X = 0, Y = 0, - 00 < 2 < 00. 
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The envelope equations (35) can be further simplified using (26) and (34) so that 
equations relating A+, A- and their derivatives with respect to Z and T ,  evaluated 
a t  the shoreline, eventually emerge; with further use of (16) and (24), these take the 

k4 
-2i-AZ, AT +&A+ - A, Af} (X = 0, Y = 0), (36) 

w - -  

where s o  = sl(o,o), (37) 

(38) x(a) so = k l e  X,(z, y = 0) exp (-2kz cos a) dz, 
0 

-32Nx2sin2a+i ( 3 +  32Nsin2aJom - C,Z dl)} 
w 7t 1 - W 2  

> (39) 

and the integral in (39) is to be interpreted as a principle value. 
Therefore the set of equations governing the temporal and spatial evolution of 

the edge-wave envelopes consists of (26), (34) and (36); the nonlinear 
equations (36) determine the behaviour of A+ and A- at the shoreline, and thus 
A + ( X  = 0, Y = O,Z, T ) ,  together with (34), serve as boundary conditions for the 
determination of A +  (X, Y ,  2, T) through the linear equations (26). 

It is interesting tonote that the edge-wave linear dispersion relation Q ( k )  = (k sin a)$ 

(40) 
Q“ = c; - sinaa sin a 

cg Q’(k) = - 
252 ’ 

implies that  

Q 4Q3 . 
Recalling that Q = &J, i t  is clear that  (36) are precisely of the form (12), suggested 
by the more intuitive arguments of $3. Furthermore, the evolution equation derived 
by Minzoni & Whitham (1977) (see equation (63) in their papert) can be immediately 
obtained from (36) by letting A = A+ = A_,  ,u = E ,  and neglecting the dependence 
on Z: 

A ,  = 8k2cosmX(a)SOA*+ &-2i- A2A*. (41 1 ( 3 
Thus (36) agree with the already known results a t  the shoreline. 

5. Edge-wave envelope solitons 
The evolution equations for the envelope of a single free travelling edge-wave 

packet are obtained by setting A- = So = 0 in (26), (34) and (36). I n  addition, the 
balance ,u = €4 is adopted, so that the nonlinear effects enter at the same level as the 
dispersive effects; with the notational simplification A = A+, the appropriate set of 
envelope equations reads 

(42 ) 

-cosaA,+sinaAy+iAZ+- Axx+Ayy+Azz = 0 ( - X t a n a  < Y < 0), (43) 

(44) 

k4 1 
”( k 1 

a 
A,+cgA,+i,u(&Azz+~A2A* = 0 (X = 0, Y = O), 

AY-2iQA,+,uA,, = 0 ( Y  = 0 ) ;  

(42) is immediately recognized as the nonlinear Schrodinger equation. 

t The results of the dimensionless formulation used in this paper can be related to those of 
Minzoni & Whitham (1977) by setting g = 1 ,  and letting A+ = A-+B*/4w,  S++* /2w,  S,-ta,JSo, 
where wz = 4k sin a. 
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define a new slow timescale : 
It is convenient to adopt a frame of reference moving with the group velocity and 

2 = Z-c,T, T = p T ,  (45) 

SO that, to the same order of approximation, (42)-(44) imply 

P 
k -cosaAx+sinaAy+iAZ+- (Axx+AYy+Agg) = 0 ( - X t a n a  < Y < 0), (47) 

A , + i s i n a A i + ~ ( c ~ A i i . - 2 i 0 A i i )  = 0 ( Y  = 0). (48) 
A special solution of (46)-(48) represents a uniform, periodic, finite-amplitude 

edge-wave train :f 

(49) 
A = A o e x p r f : 2 1 2  (Xsina+ Ycosa)}exp( - i B ~ A o ~ z ~ ) ,  k4 

where A ,  = A ( X  = 0, Y = 0,p = 0). The linear stability of the finite-amplitude edge 
wave is readily determined : since the coefficients of A22 and A2A* in the nonlinear 
Schrodinger equation are of the same sign, linear perturbations to the special solution 
(49) tend to grow (Benney & Newel1 1967), in accordance with the results of Whitham 
(1976). In fact, the complete solution of the nonlinear Schrodinger equation (Zakharov 
& Shabat 1972) indicates that  the instability gives rise to a series of envelope solitons. 
The present formulation can be used t o  investigate the three-dimensional structure 
of edge-wave envelope solitons. 

As is well-known, (46) admits soliton solutions with a sech-type structure : 

A ( X  = 0, Y = 0,2, P)  = y(g) ei(pg+m+) , g = K Z - A p ,  (50)  

where 

with (53) 

The structure of an edge-wave envelope soliton in the vertical and seaward directions 
is determined by solving the linear boundary-value problem, consisting of (47) subject 
to the conditions (48) and (50), in the wedge -Xtana  < Y < 0. To leading order,$ 
the solution is found to be 

x exp(i(pZ++~)-p(Xcosa-  Ysina)). (54) 

It should be remarked that (since p < 0) the decay rate in the seaward direction of 
an edge-wave packet with an envelope of the above form is diminished owing to 
nonlinear effects. In addition, the phase of an envelope soliton depends on the seaward 
and vertical coordinates. 

t This solution has been found before by Whitham (1976) by expanding the frequency and the 
decay rates of an edge wave in the offshore and vertical directions in powers of the amplitude. 

$ The solution (54) satisfies the condition (48) to O ( y ) ;  the O h )  terms in (48) would give rise 
to higher-order-scale dependencies, which are not considered here. However, i t  should be noted that 
i t  is not consistent to drop such terms in (26) and (34) because they contribute to  the O ( y )  terms 
in (36). 
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6. Instability of standing edge waves 
A uniform periodic wavetrain of frequency w ,  normally incident and reflected on 

a beach, is unstable to  standing edge-wave perturbations of frequency (Guza & 
Davis 1974; Minzoni & Whitham 1977). The growth due to the instability is initially 
exponential, but, as the edge-wave amplitude increases, the nonlinear terms due to 
edge-wave self-interactions become important, and eventually a steady state is 
reached. The stability of the resulting steady-state subharmonic standing edge waves 
to large-scale variations can be investigated, using the already-developed envelope 
equations. 

The steady-state standing finite-amplitude edge wave A+ = A- = A = A,  + iAi is 
a special solution of (26) ,  (34) and (36) : 

( 8k2wxS0 cos a); 
A =  

2ik4 - (55) 

The linear stability of A is investigated by writing 

A , ( X , Y , Z , T ) = A + a k ( X ,  y , z 7 T ) ,  (56) 
and linearizing for the perturbations a+. - Thus (36) leads to four linear equations for 
the real and imaginary parts of a + - = a , + i a at the shoreline : 

where 
2k4 

b = 8k2x cos a, d = -, 6 = 6, + isi. 
w 

The stability properties of the steady-state solution A depend on the relative 
importance of the nonlinear and dispersive effects. Accordingly, the consequences of 
the balance p = ei are investigated first. As is customary in linear stability analysis, 
it is assumed that 

3 (59) i K Z + p T  (a+,, a+i, a-rj a-i) = (a19 a3, a4) e 

where K is taken to be real. Upon substitution of (59) into (57) and (58), a linear 
system of four homogeneous algebraic equations for the perturbation amplitudes a,, 
a2, a3, a4 is obtained. The solvability condition for this system determines the 
appropriate values of p : 

p = fic,K+pq+O(,u2), (60) 

As expected, to leading order, edge-wave envelope perturbations propagate with the 
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group velocity; furthermore, (61) implies that  p has a negative real part, since, 
according to (39), 6, < 0, and the constant term in (61) is positive. Therefore, i fp  = 8, 
the steady-state edge waves exhibit no instability. 

The balance p = E in the perturbation equations (57) and (58)  is considered next. 
Following the usual procedure, substitution of (59) into (57) and (58) leads to a 
fourth-degree algebraic equation for p .  The appropriate values of p depend on K ,  So, 
w and the beach angle a = .n/2N. Accordingly, x and 6 must be evaluated as functions 
of the beach angle, requiring tedius calculations owing to the principal-value integral 
involved in (39).t For this reason, attention is focused on the stability properties of 
steady-statme edge waves on a mildly sloping beach, a = n/2N 4 1, which is usudly 
the case encountered in practice. 

As shown by Minzoni & Whitham (1977), in the small-beach-angle limit, x and S 
can be evaluated asymptotically : 

(62) 
k4 

&(a) - -(-1.8413+i0.4942) (a+O). 
1 

w x(a) - 9’ 

With the change of variables 

A ,  = sin2 a A;, - So = sin2 a SA, Z = sin a Z’, (63) 

the steady-state edge waves are given by A; = A’ = A‘, where A’ follows directly 
from ( 5 5 ) .  Similarly, the linearized envelope equations for small perturbations 
u; = a;,+iaii to  A’ = Ai+iAI follow immediately from (57) and (58); when the 
primes are dropped, the appropriate perturbation equa.tions take the form (57) and 
(58) with E = p, and 

(64) 
1 0 4  0 7  

w 4e2 ’ 128 cg = -, b = - d = -, S = ~ ‘ ( 0 . 7 2  x 10-2+i0.19 x lop2). 

For perturbations of the form of (59), the linearized equations (57) and (58) specify 
p through the vanishing of the determinant of the 4 x 4 matrix B with elements 

iK 
BI1 = p +--2dA, A,-6, I A I 2 ,  

B1, = -bS0-26,A~+26iA,Ai,  

B2, = d/A12+2dA:-6iJA12, 

B23 = -2SrA,Ai-26iA,2, 

B,, = B13, B32 = B14, B33 = p---2dA,Ai-S,1A12, B,, = BIZ,  

B,, = - d I A I - 2dAf + 61 A 1 ’, 
0 

BI4 = -2S,A,Ai+24Af,  
iK 

Bz2 = P + - + ~ ~ A , A ~ - S , I A ~ ~ ,  
0 

B2, = bSo-2SrAf-2SiA,Ai, 
iK 
w 

iK 
6 1 4 1  = B23, BdZ = Bz4, B43 = 6 1 2 1 ,  B44 = p--++dArAi-6rIA12. (65) 

w 

As already indicated, the values of p are the roots of a fourth-degree algebraic 
equation, and, from (65), i t  is clear that  they are either real or occur in complex 
conjugate pairs. The values of p were computed by solving the appropriate algebraic 
equation numerically using Newton’s method. Since w is the (dimensionless) frequency 
of the incoming wavetrain, i t  can be normalized to unity without any loss of 
generality. The four values of p were calculated as functions of K for So = 1. As 
expected, for K = 0, the equilibrium state is stable: two of the roots have negative 

t Minzoni & Whitham (1977) give values of the principal-value integral for a = in, in. 
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real parts, while the other two are pure imaginary. However, when K is different from 
zero, the pure imaginary pair of roots can become complex with a positive real part, 
implying that such disturbances are unstable. In  particular, there is a certain range 
of K(O < K < 0.052) for which instability is present; the growth rate (real part of 
p ) ,  corresponding to the most unstable disturbance ( K  = 0.036), is found to be 0.0163. 
It should be noted that the range of unstable perturbation wavenumbers for different 
values of 8, follows directly from the results for So = 1,  since (55) and (65) imply that 
p(mK, mS,) = mp(K, So) for any m. Thus the most-unstable wavenumber and the 
maximum growth rate are linearly increasing functions of 8,. Furthermore, the 
corresponding imaginary parts of p turn out to be substantially smaller than the real 
parts, so that  the unstable disturbances represent nearly standing waves of growing 
amplitude. 

Recalling the adopted scalings (10) and (63), the unstable perturbation wavelengths 
A can be related to the wavelength A,, of the steady-state edge waves, (and to the 
wavelength, A, = h,/4 sin a of the incoming wave in deep water) : 

sin2 a 
87csS, K 

A = -  A, (0 < K < 0.052), 

where the small parameter E = am/Aoo, is the ratio of the amplitude to the wavelength 
of the incoming wave in deep water and So is defined as in (37). Expressing the 
amplitude a,, of the incoming wave a t  infinity in terms of the amplitude a,, at the 
shoreline (Minzoni & Whitham 1977), 

(66) can be rewritten in the form: 

A =  (2;3):sin2a - - A, (0 < K < 0.052). 
4eK 

Similarly, the growth rate G of the most-unstable perturbation is given in terms of 
the period 7, of the incoming wave by 

G = 0 . 0 1 6 3 ( ~ ) i ~ a .  

Table 1 gives the values of the most-unstable perturbation wavelengths and the 
corresponding growth rates for various wave amplitudes a,; having in mind the 
experiments of Guza & Inman (1975) and Guza & Bowen (1976), the typical values 
a = go, 7 = 2.7 s were used in the calculations. It is clear that the typical scale of the 
unstable disturbances is relatively long compared with the edge-wave wavelength, 
and can be comparable to the wavelength of the incoming wave in deep water. This 
suggests why no instability was observed by Guza & Inman (1975) and Guza & Bowen 

ao(cm) A / A e  CT 

1.8 7.56 0.094 
2.0 6.80 0.104 
2.5 5.44 0.130 
3.0 4.53 0.156 

TABLE 1. Wavelengths and growth rates of the most-unstable modulations for various 
incident-wave amplitudes at the shoreline; a = 6', A, = 4.75 m, T = 2.7 s 
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(1976), who used beaches of limited width. Furthermore, since the laboratory beaches 
were confined within rigid walls, the end conditions restricted the possible longshore 
modulations. For a conclusive verification of the predicted instability, experiments 
with wider beaches, where end conditions are less important, are desirable. 

The present theory is based on a number of idealizations : inviscid, small-amplitude, 
non-breakingdisturbances on perfectly reflective beaches are assumed ; such conditions 
are rarely met on natural beaches. Nevertheless, one could speculate that the 
instability of standing subharmonic edge waves to large-scale variations could be of 
some importance for certain observed phenomena. In  fact, the field observations of 
Munk (1949) and Tucker (1950) indicate that long standing waves can exist on 
beaches. As noted by Foda & Mei (1981), such long-period oscillations cannot be 
attributed to the instability of incident waves to subharmonic edge-wave perturba- 
tions, since the observed oscillations are of much longer period than that of typical 
waves in the ocean. However, the unstable edge-wave modulations evolve on a slow 
timescale compared with the period of the incoming waves (see table 1) .  Accordingly, 
the modulational instabilities of subharmonic edge waves could contribute to the 
generation of long-period oscillations near the shore, in addition to the wave-inter- 
action mechanisms of Gallagher (1971) and Foda & Mei (1981). Finally, the longshore 
variations, produced by the unstable edge-wave modulations, could play some role 
in the excitation of the observed widely spaced rip currents and circulation cells on 
natural beaches. 
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